Status of the Transverse Single Spin Asymmetry of $p+p^{\uparrow} \rightarrow \eta + X$ at $\sqrt{s} = 200$ GeV David Kleinjan For the PHENIX Collaboration ### Transverse Single Spin Asymmetry (A_N) **Definition of A**_N: The ratio of the difference and the sum of the transverse **spin-dependent** differential cross-sections of a **certain interaction**, eg. inclusive hadron production (η mesons) $$A_{N} = \frac{d \,\sigma_{\uparrow}(\phi) - d \,\sigma_{\downarrow}(\phi)}{d \,\sigma_{\uparrow}(\phi) + d \,\sigma_{\downarrow}(\phi)}$$ - A_N is an azimuthal, or "left-right" asymmetry - See if there is a difference in the production of η mesons to the left-right in pp[↑] interactions. - $Has A_N$ been measured before? ### A_N by other experiments A_N of order 10⁻¹ observed in polarized hadronic collisions over wide range of energies since 1970s. FNAL E704 Collaboration/Nuc Phys. B 510 (1998) 3-11 - STAR sees nonzero A_N for ηs (2006 Run at RHIC) - PHENIX will attempt to measure ηA_N at $\sqrt{s} = 200 \text{GeV}$ Heppelmann, DIS 2009 Proceedings http://dx.doi.org/0.3360/dis.2009.195 ## Origin of A_N ### Origin of A_N #### **Proton Structure** $$\frac{d^3\sigma^{\uparrow}(pp^{\uparrow}\rightarrow hX)}{dx_1dx_2dz}\propto q_1^{\uparrow}(x_1,k_{q,T})\cdot G(x_2)\times \frac{d^3\hat{\sigma}^{\uparrow}(q_iq_j\rightarrow q_kq_l)}{dx_1dx_2}\times FF_{q_{k,l}}$$ $$q_{i}^{\uparrow}(x_{1},k_{q,T})\cdot G(x_{2})\times$$ $$\frac{d^3 \hat{\sigma}^{\uparrow}(q_i q_j \rightarrow q_k q_l)}{dx_1 dx_2}$$ A_N Observables: small spin dependence fragmentation **function** - "Transversity" quark-distributions and Collins fragmentation - Correlation between proton and quarkspin and spin dependent fragmentation $$A_N \propto \delta q(x) \cdot H_1^{(\perp,<)}(z_2,k_2^2).$$ - Sivers quark distribution - Correlation between proton spin and transverse quark momentum $$A_N \propto f_{1T}^{\perp q}(x, k_\perp^2) \cdot D_q^h(z)$$ #### MPC detector in PHENIX - MPC is forward E.M. Calorimeter - Pseudorapidity ~ 3.1-3.9 North,-3.1-(-3.7) South - 220 cm from nominal interaction point - 2.2x2.2x18 cm³ PbWO₄ crystal towers #### MPC detector in PHENIX - MPC is forward E.M. Calorimeter - Pseudorapidity ~ 3.1-3.9 North,-3.1-(-3.7) South - 220 cm from nominal interaction point - 2.2x2.2x18 cm³ PbWO₄ crystal towers #### MPC detector in PHENIX - MPC is forward E.M. Calorimeter - Pseudorapidity ~ 3.1-3.9 North,-3.1-(-3.7) South - 220 cm from nominal interaction point - 2.2x2.2x18 cm³ PbWO₄ crystal towers - 2008 Run (p+p[†] at $\sqrt{s} = 200 \text{GeV}$) at RHIC - 5.2 pb⁻¹ integated luminosity - 45% vertical beam polarization #### Extracting the η Meson Counts $$M_{\eta} = 547 \text{ MeV/c}^2$$ Primary Decay Modes: $$\eta \to \gamma + \gamma$$ $\eta \to \pi^0 + \pi^0 + \pi^0$ (39.3%) $\eta \to \pi^0 + \pi^0 + \pi^0$ (32.5%) $\eta \to \pi^+ + \pi^- + \pi^0$ (22.7%) - Calculate invariant mass for cluster pairs - Use high energy cuts on clusters, cluster pairs - E_Cluster > 4.0 GeV - E_Pair > 20.0 GeV - Two Data sets used - Minimum bias trigger - High energy cluster trigger - 4x4 tower sum > 20.0 GeV fires the trigger ### Extracting the η Meson Counts (Exemplary for one energy bin) - How do we normalize out the background? - Take Real Events/Mixed Events (S/B), and fit with constant, C - Scaled Mixed Events = C*Mixed - Raw Counts = Real Scaled #### η Counts Minimum Bias Real Events Scaled Mixed Events Raw Counts - Clear Signal - Correlated Background at 0.2-0.4 GeV - High energy π^0 Clusters (E > 20 GeV) merge, possibly producting jet correlations - Under investigation #### η Counts Minimum Bias Real Events Scaled Mixed Events Raw Counts - Clear Signal - Correlated Background at 0.2-0.4 GeV - High energy π^0 Clusters (E > 20 GeV) merge, possibly producting jet correlations - Under investigation ### η Counts High Energy Cluster Trigger - Clear Signal, improved S/B at higher energies - Again, Correlated Background at 0.2-0.4 GeV - Shifts to the right as energy increases - Investigate with Simulations ### Estimated uncertainty in σA_N $$\sigma A_N \sim \frac{\square}{pol} \times \frac{\blacksquare}{\sqrt{\square N}}$$ Estimated Error for zero asymmetry (=maximum error) $$x_F = 2p_{log} / \sqrt{s}$$ - Beam Polarization P = 46% - Factor of 2 comes from the use of both beams polarized - Does not take into account background subtraction correction #### Summary and Outlook - Demonstrated capability of measuring η mesons in the PHENIX MPC for 0.2 $< x_F < 0.7$ in $\sqrt{s} = 200$ GeV p+p[†] collisions - North and South Arms will provide consistency checks - Tasks - Try to understand correlated background - Want to subtract the background asymmetry - Will look at how A_N behaves in X_F , p_T , and pseudorapidity.